Reevaluation of gray and white matter injury after spinal cord ischemia in rabbits.
نویسندگان
چکیده
BACKGROUND Although gray matter injury has been well characterized, the available data on white matter injury after spinal cord ischemia (SCI) in rabbits are limited. The current study was conducted to investigate the evolution of ischemia induced injury to gray and white matter and to correlate this damage to hind-limb motor function in rabbits subjected to SCI. METHODS Thirty-eight rabbits were randomly assigned to 24-h, 4-day, or 14-day reperfusion groups or a sham group (n = 9 or 10 per group). SCI was induced by occlusion of the infrarenal aorta for 16 min. Hind-limb motor function was assessed using the Tarlov scale (0 = paraplegia, 4 = normal). The gray matter damage was assessed on the basis of the number of normal neurons in the anterior spinal cord. White matter damage was assessed on the basis of the extent of vacuolation and accumulation of amyloid precursor protein immunoreactivity. RESULTS Tarlov scores gradually decreased and reached a nadir 14 days after reperfusion. There were no significant differences in the number of normal neurons among the 24-h, 4-day, and 14-day groups. The extent of vacuolation, expressed as a percent of total white matter area, was significantly greater in the 4-day and 14-day groups in comparison with the sham group. By contrast, there was no difference in vacuolation between the sham and 24-h groups. Amyloid precursor protein immunoreactivity was greater in the 4-day and 14-day groups. CONCLUSION The results in the current study show that SCI induced white matter injury as well as gray matter injury in a rabbit model of SCI. The time course for 14 days after reperfusion may differ among the gray and white matter damages and hind-limb motor function in rabbits subjected to SCI.
منابع مشابه
Acute Administration of Estradiol Protects against Spinal Ischemic-Reperfusion Injury in Male Rabbits
Introduction: Postoperative neurological deficit is the most devastating complication after thoracoabdominal aortic aneurysm repair. Despite demonstrated neuroprotective effects of estradiol, its protective efficacy against spinal cord ischemia-reperfusion and underlying mechanisms are not yet elucidated. Methods: Two groups, each of 10 New Zealand white male rabbits, were studied. Control g...
متن کاملHistomorphometric study of the spinal cord segments in the chick and adult male ostrich (Struthio camelus)
In this study, the vertical, transverse and oblique diameters of the spinal cord segments (C1, C6, C12, C18, T1, T4, L1, L4, L6 and L8) and the ratio of gray matter to white matter in chick (l month) and adult (18 months) male ostriches, each group consisted of 3 animals, were measured with standard micrometric method using 6 μm thick sections by light microscope. With advancement of age, the r...
متن کاملDeteriorating stroke model: histopathology, edema, and eicosanoid changes following spinal cord ischemia in rabbits.
Secondary motor dysfunction is often observed following ischemic episodes in the central nervous system. To study potential mechanisms of postischemic motor deterioration, we developed a rabbit spinal cord ischemia model that has characteristics similar to the clinical condition termed deteriorating stroke. In this model, 70% of the rabbits regained substantial motor function by 4 hours after c...
متن کاملWhite matter injury in spinal cord ischemia: protection by AMPA/kainate glutamate receptor antagonism.
BACKGROUND AND PURPOSE Spinal cord ischemia is a serious complication of surgery of the aorta. NMDA receptor activation secondary to ischemia-induced release of glutamate is a major mechanism of neuronal death in gray matter. White matter injury after ischemia results in long-tract dysfunction and disability. The AMPA/kainate receptor mechanism has recently been implicated in white matter injur...
متن کاملProtective Effect of Catechin Hydrate on Spinal Cord Ischemia-reperfusion Injury in Rats
Background: Aortic artery stenosis leads to Ischemia-Reperfusion (I-R) injury, which can cause certain clinical expressions, such as paraplegia. Objectives: To appraise the effect of Catechin Hydrate (CH) against spinal cord I-R injury. Materials & Methods: A total of 35 male rats (250-300 g) were divided randomly into five groups: intact, sham surgery, dimethyl sulfoxide (I-R+DMSO), low-dos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 105 2 شماره
صفحات -
تاریخ انتشار 2006